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Abstract

It is known that in high dimensions there exist abundant localized excitations
such as dromions, lumps, ring soliton solutions and so on. In this paper, the
possible chaotic and fractal localized structures are revealed for the (2 + 1)-
dimensional dispersive long-wave equation. The chaotic and fractal dromion
and lump patterns of the model are constructed by some types of lower-
dimensional chaotic and fractal patterns.

PACS numbers: 05.45.—a, 02.30.1k

Since the concept of the fractal was proposed by Mandelbrot in 1975, it has seen the most
remarkable developments in mathematical science and has had important influences on biology
and social science. The fractal has also been widely applied to physics such as fractal growth
phenomena including diffusion-limited aggregation, viscous fingering, cracks, etc, and the
physical properties (such as diffusion, flow, vibration magnetism, etc) of fractal structures
such as percolation clusters, polymers, porous media and so on. Usually, solitons, chaos and
fractals are the most important three parts of nonlinear science [1]. Conventionally, these three
parts are treated independently. In other words, one does not discuss the possibility of the
existence of chaos and fractals in a soliton systems.

However, in a recent study of soliton systems, we have found that some lower-dimensional
arbitrary functions can be included in the exact solutions of some (2 + 1)-dimensional integrable
models. Now the important and interesting question is what will happen when these lower-
dimensional arbitrary functions are taken as solutions of some lower-dimensional chaotic
systems or some types of fractal functions. In particular, are there some types of high-
dimensional localized excitations with some kinds of chaotic and/or fractal behaviours?

To answer these questions concretely, we take the (2+1)-dimensional dispersive long-wave
system (DLWS) as a simple example, which reads

Uy + Uy + Uglly + Ul =0,

ey

Vit (Ut utugy) =0.
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The (2 + 1)-dimensional DLWS (1) is one of the integrable extensions [2, 3] of the
(1 + 1)-dimensional integrable DLWS,

U + v, +uu, =0,

@

which are derived in the context of a water wave propagating in narrow infinitely long channels
of finite constant depth [4]. Some interesting properties of the system (1), which were first
obtained by Boiti e al [5], have been studied by several authors [5-8]. For instance, the
model (1) is Lax and IST (inverse scattering transformation) integrable [5] but not Painlevé
integrable [6]. In [7] and [8], it was pointed out that the (2 + 1)-dimensional DLWE possesses
Kac—Moody—Virasoro type and general wo, symmetry algebras with some arbitrary functions,
which shows us that the exact solution of the model may have some arbitrary functions.
To solve the (2 + 1)-dimensional DLWE (1), we take the transformation

v+t Wututu), =0

u=2(n f) +uop(x, 1), vzz(lnf)xy_l 3)
which can be obtained from the standard Painlevé truncation expansion with u = uo(x, t), an
arbitrary function of {x, t}, and v = —1 a seed solution of (1).

Substituting (3) into (1) yields two multi-linear equations in f which degenerate to the
same trilinear form:

2((fxyt + ulexy + ulfxxy) + fxxxy)f2 + 2(_fxfyu1x - (ulfxx + fxt + fxxx)fy
- (fxxy + 2“1fxy + fvl)fx - fxyfxx - ftfxy)f

+4fxfy(ulfx+fxx+ﬁ)=0' “4)
To find some interesting special solutions of (4), we can use the variable separation ansatz
f=1+aipx.t)+axq(y, 1) +asp(x,1)q(y.1), &)

where ay, a;, az are arbitrary constants and p = p(x,t) and g = g(y, t) are functions of the
indicated variables only. Substituting equation (5) into (4) yields
[2(a1 +a3q) — (ao +aip +axq +aspq) py 0 1(pr + pux +u1py)

+[2(az + a3 p) — (ao + a1 p + g + a3 pq)q; 'd,1g, = 0. (6)
Because p is y-independent and ¢ is x-independent, equation (6) can be separated into two
equations:

Pi = —pxx = pxtto — (@1a2 — a3)(c2p” — c1p + co), @)

4 = (a1 +asq)*co + (1 + axq)*cs + (a1 + a3q) (1 + arq)cy, ®)
where ¢; = ¢;(¢), i = 1, 2, 3 are arbitrary functions of ¢.

Although it is not an easy task to obtain general solutions of equations (7) and (8) for
any fixed ug, we can treat the problem in an alternative way. Because both uy and p are
functions of {x, ¢}, we can view p as an arbitrary function while fixing uo by equation (7). As
to equation (8), its general solution has the form

1
1T ar) ®

with F(y) being an arbitrary function of y, while the new arbitrary functions A, A, and A;
are linked with ¢y, ¢; and c¢3 by

o = _a3(Araz+a)Ay a3Ay _ (Agas + ay)’Asx
(amay —a3)?A; (a1ay —a3)*  (a1az — a3)? Ay
o = (a1ay + 2Asara3 + a3) Ay 2aya3Ay 2(Azaz + ar)(ax Az + 1) Az, (10)
(a1a2 — az)?A; (a1a2 — az)? (a1a; — a3)?A;
co = ax(az Az + DAy, a3 Ay (a2Ar +1)? A3,

C(aay — a3)?A(1)  (aay —a3)? (a1ar —az)?A;
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Finally, substituting (5) into (3), we obtain a quite general solution of the

(2 + 1)-dimensional DLWE (1)
"y 2(ay + azq) px
l+ap+axq+aszpq
_ 2aiay — a3) pxqy
(1+ai1p +axq + a3 pq)*
where p is an arbitrary function of {x, t}, g is determined by equation (9) and u is determined
by equation (7) with (10).

It is worth pointing out that the expression for the physical quantity vl (12) is valid
for some other physical models such as the asymmetric Nizhnik—Novikov—Veselov (ANNV)
equation [9] and the asymmetric Darvey—Stewartson (ADS) equation. If ¢ in (12) is taken as
an arbitrary function of {y, ¢}, then the expression (12) is also valid for some types of quantities
of the NNV and DS systems [10].

As pointed out in [9-11], because p and F(y) are arbitrary functions, there exist many
stable localized soliton solutions such as the multi-dromion solutions, multi-lump solutions
and multi-ring soliton solutions. Furthermore, if the functions p and ¢ are selected as some
types of chaotic functions then some types of chaotic non-localized patterns the solutions
of (12) such as the chaotic—chaotic patterns, periodic—chaotic patterns and the chaotic line
soliton patterns can be found [12]. Now the most important question is whether we can find
some types of chaotic localized solutions (say, the chaotic dromions and lumps) for the high-
dimensional soliton system. Actually, the answer is obviously positive because the functions
p, F(y), A1(t), A2(¢) and A3(¢) are arbitrary functions. There are many types of possible
chaotic and fractal dromion and lump patterns because any types of chaos and fractal models
can be used to construct localized solutions. In the remainder of this letter, we appropriately
select the arbitrary functions to reveal some special types of chaotic and fractal dromions and
lump solutions for the field v1 (12) of the 2DLWE witha; = 1,a, = 1,a3 = 2, i.e.

Px4y

+ ug an

vl=v+1= (12)

vl=2(1+p+q+2pq)2' (13)
(i) Chaotic dromions. Setting p and g as

p=GB0+h()(1+e"), q=¢, (14)
with

Al—1=A=A35=cho=c1=c, =0, qz; (15)

F(y)’
where £(¢) is an arbitrary function of ¢. From the expression (13) with (14), we know that the
amplitude of the dromion is determined by the function 4(¢). In particular, if we select the
function 4 (t) as a solution of a chaotic system, for instance, the well known Lorenz system [13]

fi =—10(f — g, g = f(60—h) —g, hy=fg—3%h,  (16)

then the field v1 becomes a typical chaotic dromion solution. In the selection (14), only one
function 4 is included explicitly. The functions f and g are used to determine the function
h via (16) (one may also write down a single complicated third-order ordinary differential
equation for the function / by ruling out the functions f and g from (14)). At any fixed value
of h(t), we can get a single-dromion solution as shown in figure 1(a) (at a fixed time given
by h(¢t) = 0). The amplitude of the dromion is changed chaotically with i (¢) as depicted in
figure 1(b).

(ii) Regular fractal dromions and lumps with self-similar structures. Recently, some
types of piecewise smooth solutions such as the peakons, cuspons and compactons have been
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Figure 1. Plot of the single solution for the field v1 given by (13) with (14). (a) The full structure
of the dromion when A (¢) = 0. (b) The evolution of the amplitude of the chaotic dromion.

widely applied in (1 + 1)-dimensional soliton systems [14]. All the smooth lower-dimensional
piecewise functions can be used to construct higher-dimensional peakons, cuspons and
compactons. Furthermore, to our surprise and excitement, many lower-dimensional piecewise
smooth functions with fractal structures can be used to construct exact localized solutions of
higher-dimensional soliton systems which also possess fractal structures. In (2+1)-dimensions,
one type of the most important basic excitations are so-called dromions which are exponentially
localized in all directions. Selecting the arbitrary functions of (13) appropriately, we may obtain
some kinds of fractal dromions. One of the simple fractal dromions (13) with (15) and

p = exp(—x(x +sin(In(x?)) — cos(In(x?)))),

q = exp(—y(y +sin(In(y*)) — cos(In(y*)))),
plotted in figures 2(a), (b) is a density plot of the fractal structure of the dromion at the
region {x = [—0.07,0.07], y = [—0.032,0.032]}. To observe the self-similar structure
of the fractal dromion more clearly, one may enlarge a small region near the centre of fig-
ure 2(b). For instance, if we reduce the region of figure 2(b) to {x = [—0.0066, 0.0066],
y = [-0.0066,0.0066]}, {x = [—0.00138,0.00138], y = [—0.00138,0.00138]},

a7
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Figure 2. (a) Plot of the fractal dromion solution given by (13) with (17). (b) A density plot of the
fractal dromion related to (a) at the region {x = [—0.032, 0.032], y = [—0.032, 0.032]}.

{x = [-0.00029,0.00029], y = [—0.00029,0.00029]}, {x = [—0.00006,0.000 06],
y = [—0.000 06, 0.000 06]} and so on, we find a totally similar structure to that presented
in figure 2(b).

The lump solution (algebraically localized in all directions) is another type of significant
localized solution in high dimensions. If we select the functions p and g of (13) appropriately,
we can also find some types of fractal lump solutions. For example, selecting

p= %(sin(ln(xz)) — cos(In(x?)))?,
Iyl

9= (sin(In(y*)) — cos(In(y*)))?,

(18)
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Figure 3. (a) Plot of the lump solution given by (13) with (18). (b) Density plot of the fractal lump
solution related to (a) at the region {x = [—0.0128, 0.0128], y = [-0.0128, 0.0128]}.

and fixing the functions A; and ¢; as in (15), we obtain a lump solution with fractal structure.
Figure 3(a) plots the lump solution (13) with (18) in three-dimensional coordinates. From
figure 3(a), we can see that the solution is localized in all directions. Near the centre there are
infinitely many peaks which are distributed in a fractal manner. To see the fractal structure of the
lump solution (13) with (18) we should look at the structure more carefully. Figure 3(b) presents
a density plot of the structure of the lump (13) with (18) at the region {x = [—0.14,0.14], y =
[—0.14, 0.14]}. More detailed studies will show us the self-similar structure of the lump. For
instance, if we reduce the region of figure 3(b) to {x = [—0.03,0.03], y = [—0.03, 0.03]},
{x = [-0.0063,0.0063],y = [—0.0063,0.0063]}, {x = [—0.0013,0.0013],y =
[—0.0013, 0.0013]}, {x = [—0.00026, 0.00026], y = [—0.000 26, 0.000 261}, ..., we can
obtain a totally similar structure to that plotted in figure 3(b).
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Figure 4. Plot of the stochastic lump solution given by (13) with (20).

(iii) Stochastic fractal dromions and lumps. In addition to the self-similar regular fractal
dromion and lumps, the lower-dimensional stochastic fractal functions may also be used to
construct high-dimensional stochastic fractal dromions and lump solutions. The most well
known stochastic fractal function is the so-called Weierstrass function

N
=w(p) =Y Hsin(D'n). N oo, (19)
k=0

where the independent argument n may be a suitable function of {x, ¢t} and/or {y, t}, say,
n = x +at and n = y in the functions of p and ¢ respectively, for the following selection (20).
If the Weierstrass function is included in the dromion and/or lump solutions, then we obtain the
stochastic fractal dromions and lumps. Figure 4 presents a plot of a typical stochastic fractal
lump solution which is determined by (13) with (19) and

p = w(x +at) + (x +at)* + 1000, g = w(y) + y*+ 1000 (20)

att = 0. In figure 4, the vertical axis denotes the quantity v2 which is only a re-scaling of the
field v1: v2 = v1/200000.

Why can a dromion and/or a lump be chaotic and fractal? In [15], by means of pure numer-
ical calculations, the authors pointed out that for the DS equation, non-chaotic dromions may
be remote controlled. Actually, the chaotic and fractal behaviours of dromions are also due to
the boundary conditions. Though the physical quantity v1 has a zero boundary condition, some
other types of physical quantities or potentials such as u (11) possess nonzero chaotic and/or
fractal boundary conditions. In other words, the chaotic and fractal dromions are controlled in
the distance by those quantities with nonzero boundary values. In fact, every type of known
dromion solution which is localized in all directions for any (2 + 1)-dimensional model can be
remote controlled by some types of potentials which possess nonzero boundary conditions. It
is known that for an n-dimensional N -order (Painlevé) integrable model there exist enough (N)
arbitrary (n — 1)-dimensional arbitrary characteristic functions. To find the general closed so-
lutions with enough characteristic functions for nonlinear partial differential equations is quite
difficult except for those C-integrable models [16]. For the (2 + 1)-dimensional DLWS (1), the
general solution should possess five two-dimensional characteristic functions. In our special
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variable separation solution, only one two-dimensional and some one-dimensional arbitrary
functions are included. The propagation of the exotic chaotic behaviour along the special
characteristic for the field u leads to the chaotic and fractal behaviours of the dromions and
lumps for the field v1.

Although experimental physicists have not yet found real dromion excitations in any real
physical systems, we still believe that there must exist many possible applications for this
special and interesting phenomenon. First of all, it can be used to produce dromion excitations
in real physics. The reason for dromion excitations have not yet been found in any real physical
system is that although some types of physical quantities are localized in all directions, some
other types of quantities (potentials) possess nonzero boundary conditions. Hence, in order
to find the dromion excitations for some kinds of physical quantities, one can take advantage
of some other types of quantities by the remote control method. In this way, when the stable
dromion is found, the chaotic dromion can also be immediately found by using the chaotic
control signal.

Except for the chaotic dromion solutions, we also find the fractal structures for (2 + 1)-
dimensional DLWE shown in figures 2(b) and 3(b). As is known, fractals not only belong to
the realms of mathematics and computer graphics, but also exist nearly everywhere in nature,
such as in tree branching, cloud structures, galaxy clustering, fern shapes, human veins, leaves,
music, coastlines, fluid turbulence, crystal growth patterns and in numerous other examples. By
selecting different types of lower-dimensional fractal models, one may obtain various beautiful
higher dimensional fractal patterns. These beautiful pictures may be useful in costume design,
architecture and so on. In addition, one can compose music by choosing appropriate forms of
the arbitrary functions such as p and g. So, in the future, perhaps the most famous artists will
also be the most famous physicists and/or mathematicians. Generally, chaos and fractals are
the opposites to solitons in nonlinear science. Solitons are the representatives of integrable
systems while chaos and fractals are on the behalf of non-integrable systems. However, in this
letter, we find some chaotic and fractal structures for the lump and dromion solutions of the
(2+ 1)-dimensional DWLE which is a so-called Lax and/or IST integrable equation. Naturally,
the question of what on earth the integrability definition is, casts on our mind. So does the
question of how to find and make use of this novel phenomena in reality.
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the Outstanding Youth Foundation (no 19925522), the Research Fund for the Doctoral Program
of Higher Education of China (grant no 2000024832) and the Natural Science Foundation of
Zhejiang Province of China.
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